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• A social choice function  can be strategically manipulated by voter  
if, for some  and some , we have  
where  and . 
•  is strategy-proof if it is not strategically manipulatable by any agent. 
• Strategy-Proof/Truthful/Incentive-Compatible: 
• “truth-telling is a dominant strategy”

𝑓 𝑖
<1 , …, <𝑛 ∈ 𝐿 <′ 𝑖 ∈ 𝐿 𝑎 <𝑖 𝑎′ 

α = f( <1 , …, <i , …, <n ) α′ = f( <1 , …, <′ i , …, <n )
𝑓

Recall: Strategy-Proofness



• An allocation rule is a function , mapping preferences of the 
agents into alternatives. 
• The allocation space is the unit interval . 
• An outcome in this model is a single point . 
• Each agent  has a preference ordering  over the outcomes in .  
• The preference relation  is single-peaked if there exists a point  (the 

peak of  ) such that for all  and all ,  
• Let  denote the class of single-peaked preferences. 
• We denote the peaks of preference relations  by . 

f : × ℛi → A

A = [0,1]
x ∈ A

i ∈ N ⪰i [0,1]
⪰i pi ∈ A

⪰i x ∈ A\{pi} λ ∈ [0,1) λx + (1 − λ)pi ≻i x
ℛ

⪰i , ⪰′ i pi, p′ i

Preliminaries



Single-Peaked Preferences
• Theorem. Suppose  is strategy-poof. Then   is onto  it is unanimous  if 

it is Pareto-optimal.
f f ⇔ ⇔

• Proof. 
1) Strategy-proof + onto  unanimous 

Fix , and consider any unanimous profile  such that  
.  

Let  be such that .  
By strategy-proofness,  ,  
Otherwise, if agent 1’s true preference is , (s)he could misreports 
his(her) valuation as  and manipulate the outcome 
Repeating this argument, 

⇒
x ∈ [0,1] ⪰ ∈ ℛn

pi = x, ∀i ∈ N
⪰′ ∈ ℛn f( ⪰′ ) = x

f( ⪰1 , ⪰′ 2 , …, ⪰′ n ) = x
⪰1

⪰′ 1
f( ⪰1 , ⪰2 , …, ⪰n ) = x



Single-Peaked Preferences
• Theorem. Suppose  is strategy-poof. Then   is onto  it is unanimous  if 

it is Pareto-optimal.
f f ⇔ ⇔

• Proof. 
1) Strategy-proof + unanimous  Pareto-optimal 

Suppose  is not Pareto-optimal at some profile .   
There must exist  such that   and there exists  such 
that . 
Assume  
The above fact implies . 
a) If , it violates the unanimity since all peaks are equal but  

⇒
f ⪰ ∈ ℛn

x ∈ [0,1] x ⪰j f( ⪰ ), ∀j ∈ N i ∈ N
x ≻i f( ⪰ )

p1 ≤ p2 ≤ … ≤ pn
f( ⪰ ) < pj, ∀j ∈ N

p1 = pn p1 > f( ⪰ )



Single-Peaked Preferences
• Theorem. Suppose  is strategy-poof. Then   is onto  it is unanimous  if 

it is Pareto-optimal.
f f ⇔ ⇔

0 1p1 p2 pj pj+1 pn⋯ ⋯
p′ i

⋯⋯= < ≤
f ( ⪰ )xn

=

b) If ,  
For all , let  be a preference relation such that both  and 

. 
Let . 
By strategy-proofness,  , otherwise agent  with 
preference  could manipulate  by reporting preference  

p1 = … = pj < pj+1 ≤ … ≤ pn

i > j ⪰′ i p′ i = p1
f( ⪰ ) ⪰′ i pi

xn = f( ⪰1 , …, ⪰n−1 , ⪰′ n )
xn ∈ [ f( ⪰ ), pn] n

⪰′ n f ⪰n



Single-Peaked Preferences
• Theorem. Suppose  is strategy-poof. Then   is onto  it is unanimous  if 

it is Pareto-optimal.
f f ⇔ ⇔

0 1p1 p2 pj pj+1 pn⋯ ⋯
p′ i

⋯⋯= < ≤
f ( ⪰ ) xn

=

b) If ,  
Similarly, , otherwise agent  with preference  could 
manipulate  by reporting preference  

p1 = … = pj < pj+1 ≤ … ≤ pn

xn ∉ ( f( ⪰ ), pn] n ⪰n
f ⪰′ n



• Could you find a strategy-proof strategy on this domain? 
• Choose agent 1’s peak, 
• Just choose a constant value belonging to . 

• (Median-voter Rule) Suppose that the number of agents n is odd, then picks the 
median of the agents’ peaks ( ’s) 
• The above rule is strategy-proof:  
• If an agent’s peak  lies below the median peak, then he can only change the 

output by reporting a preference relation whose peak lies above the true 
median.  
• This effect of this misreport is for the rule to choose a point even further away 

from , making the agent worse off.

[0,1]

pi

pi

pi

Rules

0 1pi Medium 0 1pi Medium p′ i



Rules
• More generally, for any number of agents  and any positive integer 

, the rule that picks the -th highest peak is strategy-proof. 
• If we choose average rather than medium? 
• (❓Question 1) Is the rule of choosing the average of the  agents’s 

peaks strategy-proof ? 
• (❓Question 2) Is the rule of choosing the weighted average of the  

agents’s peaks strategy-proof ?

n
k ≤ n k

n

n



Rules
Theorem. A rule  is strategy-poof, onto and anonymous  if there exist 

 such that for all ,  
                        

f ⇔
y1, y2, …, yn−1 ∈ [0,1] ⪰ ∈ ℛn

f( ⪰ ) = med{p1, p2, …, pn, y1, y2, …, yn−1}
Sketch of Proof. 
1) Sufficiency. Easy to verify! 
2) Necessity. 
Since preferences relations are ordinal, there is only one preference relation with 
a peak at  and only with a peak at . Denote them as  and  respectively. 
For any , let  be the following outcome: 

           

0 1 ⪰0
i ⪰1

i
1 ≤ m ≤ n − 1 ym

ym = f( ⪰0
1 , …, ⪰0

n−m , ⪰1
n−m+1 , …, ⪰1

n )



Rules

According to the strategy-proofness,  
              . 

Consider a profile of preference  with peaks . Assume 
, we wish to show that: 

               

ym ≤ ym+1, ∀1 ≤ m ≤ n − 2
⪰ ∈ ℛn p1, …, pn

pi ≤ pi+1, ∀i ≤ n − 1
f( ⪰ ) = x* ≡ med{p1, …, pn, y1, …, yn−1}

For any , let  be the following outcome  
              

1 ≤ m ≤ n − 1 ym
ym = f( ⪰0

1 , …, ⪰0
n−m , ⪰1

n−m+1 , …, ⪰1
n )



(Case 1: the median is some .) 
Suppose   for some , since  is the median of all the  points, this 
implies . By assumption, 

 
Let , then we argue that : 
• If , then agent 1 with preference  could manipulate . 
• If , then agent 1 with preference  could manipulate . 

ym
x* = ym m x* 2n − 1

pn−m ≤ x* = ym ≤ pn−m+1
x* = ym = f( ⪰0

1 , …, ≻0
n−m , ⪰1

n−m+1 , …, ⪰1
n )

x1 = f( ⪰1 , ⪰0
2 …, ≻0

n−m , ⪰1
n−m+1 , …, ⪰1

n ) x* = x1
x* < x1 ⪰1 f
x* > x1 ⪰0

1 f

0 1p1 p2

y1

pn−m pn−m+1 pn⋯ ⋯

x* = ym
ym+1 yn⋯⋯

Rules



(Case 2: the median is an agent’s peak .) 
If   for some , we have . 
We can discuss the comparison between  

 and . 
The full proof is omitted here! 

ym < x* < ym+1 m x* = pn−m

f( ⪰0
1 , …, ⪰0

n−m−1 , ⪰n−m , ⪰1
n−m+1 , …, ⪰1

n ) x*

0 1p1 p2

y1

pn−m−1 pn−m+1 pn⋯ ⋯

ym+1 yn⋯⋯

x* = pn−m

ym

Rules



• If ,x* > x′ = f( ⪰0
1 , …, ⪰0

n−m−1 , ⪰n−m , ⪰1
n−m+1 , …, ⪰1

n )

0 1p1 p2

y1

pn−m−1 pn−m+1 pn⋯ ⋯

ym+1 yn⋯⋯

x* = pn−m

ym

Rules



Rules
• The parameters  can be thought of as the rule’s degree of compromise 

when agents have extremist preferences. 

 
• The above rules consider anonymity. But some some strategy-proof rules 

we have mentioned before are dictatorial. How to determine a more 
generalized strategy-proof, onto rule?

ym

0 1
p1, p2, …, pn−m

y1

pn−m+1, …, pn

x* = ym
ym+1 yn⋯⋯



Rules
Definition. A rule  is a generalized median voter scheme if there exist  points in 

 , , such that 

•  implies , 
• , and 

• For all , 

f 2n

[0,1] {αS}S⊆N

S ⊆ T ⊆ N αS ≤ αT

α∅ = 0,αN = 1
⪰ ∈ ℛn f( ⪰ ) = max

s⊂N
min{αS, pi : i ∈ S}

• , 
• , 
• , 
• , 
• , 
• , 
• , 
•

S = {∅}, min{αS, pi : i ∈ S} = α∅
S = {1}, min{αS, pi : i ∈ S} = α1
S = {2}, min{αS, pi : i ∈ S} = α2
S = {3}, min{αS, pi : i ∈ S} = α3
S = {1,2}, min{αS, pi : i ∈ S} = α1
S = {2,3}, min{αS, pi : i ∈ S} = α2
S = {1,3}, min{αS, pi : i ∈ S} = α1
S = {1,2,3}, min{αS, pi : i ∈ S} = α1



Rules

Theorem. A rule  is strategy-poof, onto  it is a generalized median voter 
scheme .

f ⇔

Definition. A rule  is a generalized median voter scheme if there exist  points in 
 , , such that 

•  implies , 
• , and 

• For all , 

f 2n

[0,1] {αS}S⊆N

S ⊆ T ⊆ N αS ≤ αT

α∅ = 0,αN = 1
⪰ ∈ ℛn f( ⪰ ) = max

s⊂N
min{αS, pi : i ∈ S}



• Consider allocating a piece of cake to  agents, the cake is modeled as the 
interval . 
• Each agent  has a value density function  that describes his/

her preference on the cake. 
• A value density function  is piecewise-constant if  can 

be partitioned into finitely many intervals, and  is constant on each of these 
interval. 
• Given a subset , agent ’s utility on  , denoted by  is given by: 

n
[0,1]

i fi : [0,1] → ℝ≥0

fi : [0,1] → ℝ≥0 [0,1]
fi

X ⊆ [0,1] i X vi(X)

vi(X) = ∫X
fi(x)dx

Application 1: Truthful Cake Cutting



• An allocation is proportional if each agent receives his/her average share of the 
entire cake: 

 

• An allocation is envy-free if each agent receive a portion that has weakly higher 
value than any portion received by any other agent, based on his/her own 
valuation: 

 
• A mechanism M is truthful if each agent’s dominant strategy is to report his/her 

true value density function. That is, for each , any  and any , 

∀i : vi(Ai) =
1
n

vi([0,1])

∀i, j : vi(Ai) ≥ vi(Aj)

i ∈ [n] ( f1, …, fn) f′ i

vi(ℳi( f1, …, fn)) ≥ vi(ℳi( f1, …, fi−1, f′ i, fi+1, …, fn))

Application 1: Truthful Cake Cutting



• Prof. Tao has given the following negative result in EC’22. 

 
• There are still three open problems: 

• Does there exist a positive integer  such that there exists a truthful proportional mechanism with  
agents? 
• Does there exist an  such that there exists a truthful, -approximately proportional mechanism? 
• Does there exist a truthful mechanism that always allocates each agent a subset on which the agent has a 

positive value?

n ≥ 3 n

α > 0 α

Application 1: Truthful Cake Cutting



• There are a set  of men and a set  of women.  
• Each  has a strict preference ordering over the elements of  and each 

 has a strict preference ordering over the men. 
•  will mean that agent  ranks  above  
• We assume that , and want to find a matching between the two 

sets. 
• A matching is called unstable if there are two men  and two women 

 such that: 
•  is mathed to  
•  is matched to , and 
•  and   

M W
m ∈ M W

w ∈ W
x ≻i y i x y

|M | = |W |

m, m′ 

w, w′ 

m w
m′ w′ 

w′ ≻m w m ≻w′ m′ 

Application 3: Stable Matchings

m

m′ 

w

w′ 

Blocking pair



• First, each male proposes his top-ranked choice. 
• Next, each woman who has received at least two proposals keeps her 

top-ranked proposal and rejects the rest. 
• Then, each man who has been rejected proposes to his top-ranked choice 

among the women who have not rejected him 
• …… 
• Theorem The male propose algorithm terminates in a stable matching.

Male-Proposals



• A matching  is male-optimal if there is no stable matching  such that 
 or  for all  with  for at least 

one  
• Theorem The male propose algorithm terminates in a stable matching. 
• Proof. Consider the first iteration such that  first occurs.

μ v
v(m) ≻m μ(m) v(m) = μ(m) m v( j) ≻j μ( j)

j ∈ M

v( j) ≻j μ( j)

Male/Female-Optimal



• For each man  and woman , let  if man  is matched with woman  and 
zero otherwise. 
• Then every stable matching must satisfy the following: 

 

• Proof. Consider the first iteration such that  first occurs.

m w xmw = 1 m w

∑
w∈W

xmw = 1,∀m ∈ M

∑
m∈M

xmw = 1,∀w ∈ W

∑
j≺mw

xmj + ∑
i≺wm

xiw + xmw ≤ 1,∀m ∈ M, w ∈ W

xmw ≥ 0,∀m ∈ M, w ∈ W

v( j) ≻j μ( j)

The LP Formulation



This Lecture
• Social choice
• Arrow’s impossibility theorem
• Gibbard-Satterthwaite Theorem 

• Strategy-proof is impossible

• Social choice with money
• VCG mechanism (with Clarke Pivot Rule)

• Maximizes social welfare
• Enable strategy-proofness


