Algorithmic Game Theory

Lecture 4

Jiaxin Song

Recall: Strategy-Proofness

- A social choice function f can be strategically manipulated by voter i if, for some $<_1, ..., <_n \in L$ and some $<'_i \in L$, we have $a <_i a'$ where $\alpha = f(<_1, ..., <_i, ..., <_n)$ and $\alpha' = f(<_1, ..., <'_i, ..., <_n)$.
- *f* is strategy-proof if it is not strategically manipulatable by any agent.
- Strategy-Proof/Truthful/Incentive-Compatible:
 - "truth-telling is a dominant strategy"

Preliminaries

- An allocation rule is a function $f : \times \mathscr{R}_i \to A$, mapping preferences of the agents into alternatives.
- The *allocation space* is the unit interval A = [0,1].
- An *outcome* in this model is a single point $x \in A$.
- Each agent $i \in N$ has a preference ordering \geq_i over the outcomes in [0,1].
- The preference relation \geq_i is *single-peaked* if there exists a point $p_i \in A$ (the *peak* of \geq_i) such that for all $x \in A \setminus \{p_i\}$ and all $\lambda \in [0,1), \lambda x + (1 \lambda)p_i \succ_i x$
- Let \mathscr{R} denote the class of single-peaked preferences.
- We denote the peaks of preference relations \geq_i , \geq'_i by p_i, p'_i .

- **Theorem.** Suppose f is **strategy-poof**. Then f is **onto** ⇔ it is **unanimous** ⇔ if it is **Pareto-optimal**.
 - Proof.

1) Strategy-proof + onto \Rightarrow unanimous

Fix $x \in [0,1]$, and consider any unanimous profile $\geq \in \mathscr{R}^n$ such that $p_i = x, \forall i \in N$.

Let $\geq' \in \mathscr{R}^n$ be such that $f(\geq') = x$.

By strategy-proofness, $f(\geq_1, \geq'_2, ..., \geq'_n) = x$,

Otherwise, if agent 1's true preference is \geq_1 , (s)he could misreports his(her) valuation as \geq'_1 and manipulate the outcome

Repeating this argument, $f(\geq_1, \geq_2, ..., \geq_n) = x$

- **Theorem.** Suppose f is **strategy-poof**. Then f is **onto** ⇔ it is **unanimous** ⇔ if it is **Pareto-optimal**.
 - Proof.
 - **1)** Strategy-proof + unanimous ⇒ Pareto-optimal

Suppose *f* is not Pareto-optimal at some profile $\geq \in \mathscr{R}^n$.

There must exist $x \in [0,1]$ such that $x \geq_j f(\geq), \forall j \in N$ and there exists $i \in N$ such that $x \succ_i f(\geq)$.

Assume $p_1 \le p_2 \le \ldots \le p_n$

The above fact implies $f(\geq) < p_j, \forall j \in N$.

a) If $p_1 = p_n$, it violates the unanimity since all peaks are equal but $p_1 > f(\ge)$

• **Theorem.** Suppose f is **strategy-poof**. Then f is **onto** ⇔ it is **unanimous** ⇔ if it is **Pareto-optimal**.

b) If $p_1 = \ldots = p_j < p_{j+1} \le \ldots \le p_n$, For all i > j, let \geq'_i be a preference relation such that both $p'_i = p_1$ and $f(\geq) \geq'_i p_i$. Let $x_n = f(\geq_1, \ldots, \geq_{n-1}, \geq'_n)$. By *strategy-proofness*, $x_n \in [f(\geq), p_n]$, otherwise agent *n* with

preference \geq'_n could manipulate f by reporting preference \geq_n

$$0 \qquad p_1 = p_2 = \dots \quad p_j < p_{j+1} \leq \dots \quad p_n \qquad 1$$

$$x_n \quad f(\geq) \qquad p'_i$$

• **Theorem.** Suppose f is **strategy-poof**. Then f is **onto** ⇔ it is **unanimous** ⇔ if it is **Pareto-optimal**.

b) If $p_1 = \ldots = p_j < p_{j+1} \le \ldots \le p_n$, Similarly, $x_n \notin (f(\ge), p_n]$, otherwise agent *n* with preference \ge_n could manipulate *f* by reporting preference \ge'_n

$$0 \qquad p_1 = p_2 = \dots \quad p_j < p_{j+1} \leq \dots \quad p_n \qquad 1$$

$$f(\geq) \quad x_n \qquad p'_i$$

- Could you find a *strategy-proof* strategy on this domain?
 - Choose agent 1's peak,
 - Just choose a constant value belonging to [0,1].
- (*Median-voter Rule*) Suppose that the number of agents n is odd, then picks the median of the agents' peaks (p_i) 's)
- The above rule is *strategy-proof*:
 - If an agent's peak p_i lies *below* the median peak, then he can only change the output by reporting a preference relation whose peak lies *above* the true median.
 - This effect of this misreport is for the rule to choose a point even further away from *p_i*, making the agent worse off.

- More generally, for any number of agents *n* and any positive integer $k \le n$, the rule that picks the *k*-th highest peak is *strategy-proof*.
- If we choose *average* rather than *medium*?
- (? Question 1) Is the rule of choosing the average of the *n* agents's peaks *strategy-proof*?
- (? Question 2) Is the rule of choosing the weighted average of the *n* agents's peaks *strategy-proof*?

Theorem. A rule f is strategy-poof, onto and anonymous \Leftrightarrow if there exist $y_1, y_2, ..., y_{n-1} \in [0,1]$ such that for all $\geq \in \mathbb{R}^n$,

 $f(\geq) = med\{p_1, p_2, \dots, p_n, y_1, y_2, \dots, y_{n-1}\}$

Sketch of Proof.

1) Sufficiency. Easy to verify!

2) Necessity.

Since preferences relations are ordinal, there is only one preference relation with a peak at 0 and only with a peak at 1. Denote them as \geq_i^0 and \geq_i^1 respectively.

For any $1 \le m \le n - 1$, let y_m be the following outcome:

$$y_m = f(\geq_1^0, ..., \geq_{n-m}^0, \geq_{n-m+1}^1, ..., \geq_n^1)$$

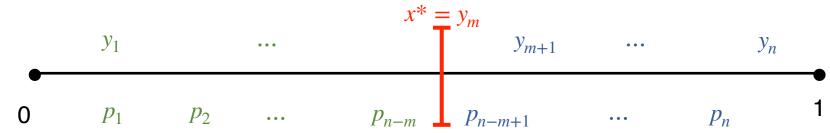
For any $1 \le m \le n - 1$, let y_m be the following outcome $y_m = f(\ge_1^0, \dots, \ge_{n-m}^0, \ge_{n-m+1}^1, \dots, \ge_n^1)$

According to the *strategy-proofness*,

$$y_m \leq y_{m+1}, \forall 1 \leq m \leq n-2.$$

Consider a profile of preference $\geq \in \mathscr{R}^n$ with peaks p_1, \dots, p_n . Assume $p_i \leq p_{i+1}, \forall i \leq n-1$, we wish to show that:

$$f(\geq) = x^* \equiv med\{p_1, ..., p_n, y_1, ..., y_{n-1}\}$$



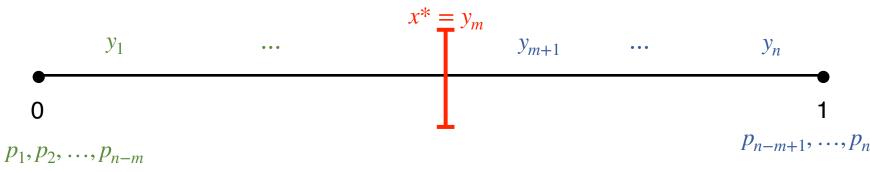
(Case 1: the median is some y_m .)

Suppose $x^* = y_m$ for some *m*, since x^* is the median of all the 2n - 1 points, this implies $p_{n-m} \le x^* = y_m \le p_{n-m+1}$. By assumption, $x^* = y_m = f(\ge_1^0, ..., \ge_{n-m}^0, \ge_{n-m+1}^1, ..., \ge_n^1)$ Let $x_1 = f(\ge_1, \ge_2^0, ..., \ge_{n-m}^0, \ge_{n-m+1}^1, ..., \ge_n^1)$, then we argue that $x^* = x_1$: • If $x^* < x_1$, then agent 1 with preference \ge_1 could manipulate *f*. • If $x^* > x_1$, then agent 1 with preference \ge_1^0 could manipulate *f*.

(Case 2: the median is an agent's peak.) If $y_m < x^* < y_{m+1}$ for some *m*, we have $x^* = p_{n-m}$. We can discuss the comparison between $f(\geq_1^0, \dots, \geq_{n-m-1}^0, \geq_{n-m}, \geq_{n-m+1}^1, \dots, \geq_n^1)$ and x^* . The full proof is omitted here!

• If $x^* > x' = f(\geq_1^0, ..., \geq_{n-m-1}^0, \geq_{n-m}, \geq_{n-m+1}^1, ..., \geq_n^1)$,

• The parameters y_m can be thought of as the rule's degree of compromise when agents have extremist preferences.



• The above rules consider *anonymity*. But some some *strategy-proof* rules we have mentioned before are *dictatorial*. How to determine a more generalized *strategy-proof*, *onto* rule?

Definition. A rule f is a generalized median voter scheme if there exist 2^n points in $[0,1], \{\alpha_S\}_{S \subseteq N}$, such that

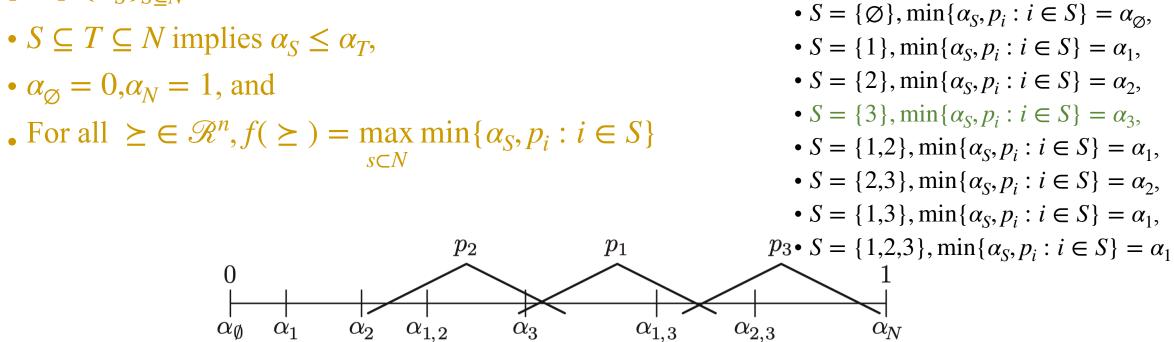


Figure 10.2. An example of a generalized median voter scheme for n = 3.

Definition. A rule f is a generalized median voter scheme if there exist 2^n points in $[0,1], \{\alpha_S\}_{S \subseteq N}$, such that

- $S \subseteq T \subseteq N$ implies $\alpha_S \leq \alpha_T$,
- $\alpha_{\varnothing} = 0, \alpha_N = 1$, and
- For all $\geq \in \mathscr{R}^n$, $f(\geq) = \max_{s \in N} \min\{\alpha_s, p_i : i \in S\}$

Theorem. A rule f is **strategy-poof, onto** \Leftrightarrow it is a generalized median voter scheme .

Application 1: Truthful Cake Cutting

- Consider allocating a piece of cake to *n* agents, the cake is modeled as the interval [0,1].
- Each agent *i* has a *value density function* $f_i : [0,1] \to \mathbb{R}_{\geq 0}$ that describes his/ her preference on the cake.
- A value density function $f_i : [0,1] \to \mathbb{R}_{\geq 0}$ is *piecewise-constant* if [0,1] can be partitioned into finitely many intervals, and f_i is constant on each of these interval.
- Given a subset $X \subseteq [0,1]$, agent *i*'s *utility* on *X*, denoted by $v_i(X)$ is given by:

$$v_i(X) = \int_X f_i(x) dx$$

Application 1: Truthful Cake Cutting

• An allocation is *proportional* if each agent receives his/her average share of the entire cake:

$$\forall i : v_i(A_i) = \frac{1}{n} v_i([0,1])$$

• An allocation is *envy-free* if each agent receive a portion that has weakly higher value than any portion received by any other agent, based on his/her own valuation:

$$\forall i, j : v_i(A_i) \ge v_i(A_j)$$

• A mechanism M is *truthful* if each agent's dominant strategy is to report his/her true value density function. That is, for each $i \in [n]$, any $(f_1, ..., f_n)$ and any f'_i ,

$$v_i(\mathcal{M}_i(f_1, ..., f_n)) \ge v_i(\mathcal{M}_i(f_1, ..., f_{i-1}, f'_i, f_{i+1}, ..., f_n))$$

Application 1: Truthful Cake Cutting

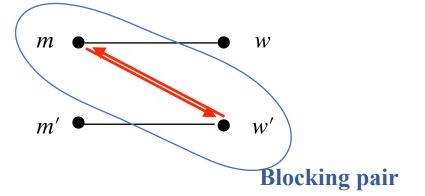
• Prof. Tao has given the following negative result in EC'22.

Theorem 3.1. There does not exist a truthful proportional mechanism, even when all of the followings hold:

- there are two agents;
- each agent's value density function is piecewise-constant;
- each agent is hungry: each f_i satisfies $f_i(x) > 0$ for any $x \in [0,1]$;
- the mechanism needs not to be entire.
- There are still three open problems:
 - Does there exist a positive integer $n \ge 3$ such that there exists a truthful proportional mechanism with n agents?
 - Does there exist an $\alpha > 0$ such that there exists a truthful, α -approximately proportional mechanism?
 - Does there exist a truthful mechanism that always allocates each agent a subset on which the agent has a positive value?

Application 3: Stable Matchings

- There are a set *M* of men and a set *W* of women.
- Each $m \in M$ has a strict preference ordering over the elements of W and each $w \in W$ has a strict preference ordering over the men.
- $x \succ_i y$ will mean that agent *i* ranks *x* above *y*
- We assume that |M| = |W|, and want to find a matching between the two sets.
- A matching is called **unstable** if there are two men *m*, *m'* and two women *w*, *w'* such that:
 - *m* is mathed to *w*
 - m' is matched to w', and
 - $w' \succ_m w$ and $m \succ_{w'} m'$



Male-Proposals

•

- First, each male proposes his top-ranked choice.
- Next, each woman who has received at least two proposals keeps her top-ranked proposal and rejects the rest.
- Then, each man who has been rejected proposes to his top-ranked choice among the women who have not rejected him
- **Theorem** *The male propose algorithm terminates in a stable matching.*

Male/Female-Optimal

- A matching μ is **male-optimal** if there is no stable matching v such that $v(m) \succ_m \mu(m)$ or $v(m) = \mu(m)$ for all m with $v(j) \succ_j \mu(j)$ for at least one $j \in M$
- **Theorem** *The male propose algorithm terminates in a stable matching.*
- *Proof.* Consider the first iteration such that $v(j) \succ_j \mu(j)$ first occurs.

The LP Formulation

- For each man *m* and woman *w*, let $x_{mw} = 1$ if man *m* is matched with woman *w* and zero otherwise.
- Then every stable matching must satisfy the following:

$$\begin{split} \sum_{w \in W} x_{mw} &= 1, \forall m \in M \\ \sum_{w \in W} x_{mw} &= 1, \forall w \in W \\ \sum_{m \in M} x_{mj} + \sum_{i \prec_w m} x_{iw} + x_{mw} \leq 1, \forall m \in M, w \in W \\ x_{mw} \geq 0, \forall m \in M, w \in W \end{split}$$

• *Proof.* Consider the first iteration such that $v(j) \succ_j \mu(j)$ first occurs.

This Lecture

Social choice

- Arrow's impossibility theorem
- Gibbard-Satterthwaite Theorem
 - Strategy-proof is impossible
- Social choice with money
 - VCG mechanism (with Clarke Pivot Rule)
 - Maximizes social welfare
 - Enable strategy-proofness