Problem Set 4

Question 1 (Single-Peaked Preferences). Consider the social choice problem in which all agents have single-peaked preferences over two dimensional allocation spaces. Formally, the allocation space is the unit square $A = [0, 1] \times [0, 1] \subseteq \mathbb{R}^2$. An outcome is a single point $\mathbf{x} \in A$. Each agent *i* has a weak preference ordering \succeq_i over the outcomes in *A*. We assume the preference relation \succeq_i is single-peaked: there exists a point $\mathbf{p}_i = (x_i, y_i) \in A$ for each agent *i* such that for all $\mathbf{x} \in A \setminus \{p_i\}$ and all $\lambda \in [0, 1), (\lambda \mathbf{x} + (1 - \lambda)\mathbf{p}_i) \succ_i \mathbf{x}$. That is, under a single-peaked preference relation, preference is strictly decreasing as one moves away from \mathbf{p}_i . The social choice function *f* takes agents' preference $(\succeq_1, \ldots, \succeq_n)$ as input, and output an outcome $\mathbf{x} \in A$.

1. Prove that the social choice function outputting the average of the peaks

$$f(\succeq_1,\ldots,\succeq_n) = \frac{1}{n} \sum_{i=1}^n \mathbf{p}_i = \left(\frac{1}{n} \sum_{i=1}^n x_i, \frac{1}{n} \sum_{i=1}^n y_i\right)$$

is not strategy-proof.

2. Suppose n is an odd number. Prove that the social choice function outputting the median of the x-coordinates of the peaks

 $f(\succeq_1,\ldots,\succeq_n) = \mathbf{p}_i = (x_i, y_i), \text{ where } x_i \text{ is the median of } \{x_1,\ldots,x_n\}$

is not strategy-proof.

3. Suppose n is an odd number. Prove that the social choice function outputting the median of both coordinates of the peaks

$$f(\succeq_1, \dots, \succeq_n) = (x_i, y_j),$$
 where $\begin{cases} x_i \text{ is the median of } \{x_1, \dots, x_n\} \\ y_j \text{ is the median of } \{y_1, \dots, y_n\} \end{cases}$

is not strategy-proof.

4. For $\mathbf{a}_1 = (x_1, y_1), \mathbf{a}_2 = (x_2, y_2) \in A$, let $d(\mathbf{a}_1, \mathbf{a}_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ be the distance between \mathbf{a}_1 and \mathbf{a}_2 . Consider the case where each \succeq_i satisfies the following additional property: if $\mathbf{a}_1, \mathbf{a}_2$ satisfies $d(\mathbf{a}_1, \mathbf{p}_i) = d(\mathbf{a}_2, \mathbf{p}_i)$, then $\mathbf{a}_1 \succeq_i \mathbf{a}_2$ and $\mathbf{a}_2 \succeq \mathbf{a}_1$. That is, each agent equally prefers any two points that have equal distance to his peak. Suppose n is an odd number. Prove that the social choice function in Part 3 is strategy-proof.

- Question 2 (House Allocation). 1. Consider the house allocation problem with *strict* preferences. Complete the proof of Theorem 10.6 in the book by proving that the allocation output by the Top Trading Cycle Algorithm does not contain a blocking coalition of agents.
 - 2. Is the allocation output by the Top Trading Cycle Algorithm Pareto-optimal?
 - 3. Consider the setting where the preferences may not be strict. Now each agent may have more than one outgoing edge. Suppose the Top Trading Cycle Algorithm iteratively finds an *arbitrary* cycle and swaps the houses according to the cycle. Is the output allocation Pareto-optimal?

Question 3 (Stable Matching). Consider the stable matching problem with a set M of males and a set N of females, with |M| = |N| = T. Each male $m \in M$ has a valuation function $f_m : N \to \mathbb{R}^+$, which yields a ranking over the females. The ranking is assumed to be strict: for any $n_1, n_2 \in N$, we have $f_m(n_1) \neq f_m(n_2)$. Each female $n \in N$ has a valuation function $f_n : M \to \mathbb{R}^+$, which yields a ranking that is also assumed to be strict.

- 1. Consider the perfect matching μ that maximizes the social welfare: $\sum_{m=1}^{T} f_m(\mu(m)) + \sum_{n=1}^{T} f_n(\mu(n))$. Is μ always stable?
- 2. Consider a stable matching μ . Is μ Pareto-optimal (meaning that there does not exist μ' , which may or may not be stable, such that every agent in $M \cup N$ receives weakly higher value and at least one agent receives strictly higher value)?
- 3. Consider a male-optimal matching μ . Prove that μ is *weakly* Pareto-optimal for males (i.e., there does not exist μ' , which may or may not be stable, such that every *male* receives *strictly* higher value).
- 4. Consider a male-optimal matching μ . Prove that μ may not be Pareto-optimal for males (i.e., for some male-optimal μ , there may exist μ' , which may or may not be stable, such that every male receives weakly higher value and at least one male receives strictly higher value).