Problem Set 4

Question 1 (Single-Peaked Preferences). Consider the social choice problem in which all agents have single-peaked preferences over two dimensional allocation spaces. Formally, the allocation space is the unit square $A=[0,1] \times[0,1] \subseteq \mathbb{R}^{2}$. An outcome is a single point $\mathbf{x} \in A$. Each agent i has a weak preference ordering \succeq_{i} over the outcomes in A. We assume the preference relation \succeq_{i} is single-peaked: there exists a point $\mathbf{p}_{i}=\left(x_{i}, y_{i}\right) \in A$ for each agent i such that for all $\mathbf{x} \in A \backslash\left\{p_{i}\right\}$ and all $\lambda \in[0,1),\left(\lambda \mathbf{x}+(1-\lambda) \mathbf{p}_{i}\right) \succ_{i} \mathbf{x}$. That is, under a single-peaked preference relation, preference is strictly decreasing as one moves away from \mathbf{p}_{i}. The social choice function f takes agents' preference $\left(\succeq_{1}, \ldots, \succeq_{n}\right)$ as input, and output an outcome $\mathbf{x} \in A$.

1. Prove that the social choice function outputting the average of the peaks

$$
f\left(\succeq_{1}, \ldots, \succeq_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} \mathbf{p}_{i}=\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}, \frac{1}{n} \sum_{i=1}^{n} y_{i}\right)
$$

is not strategy-proof.
2. Suppose n is an odd number. Prove that the social choice function outputting the median of the x-coordinates of the peaks

$$
f\left(\succeq_{1}, \ldots, \succeq_{n}\right)=\mathbf{p}_{i}=\left(x_{i}, y_{i}\right), \quad \text { where } x_{i} \text { is the median of }\left\{x_{1}, \ldots, x_{n}\right\}
$$

is not strategy-proof.
3. Suppose n is an odd number. Prove that the social choice function outputting the median of both coordinates of the peaks

$$
f\left(\succeq_{1}, \ldots, \succeq_{n}\right)=\left(x_{i}, y_{j}\right), \quad \text { where } \begin{aligned}
& x_{i} \text { is the median of }\left\{x_{1}, \ldots, x_{n}\right\} \\
& y_{j} \text { is the median of }\left\{y_{1}, \ldots, y_{n}\right\}
\end{aligned}
$$

is not strategy-proof.
4. For $\mathbf{a}_{1}=\left(x_{1}, y_{1}\right), \mathbf{a}_{2}=\left(x_{2}, y_{2}\right) \in A$, let $d\left(\mathbf{a}_{1}, \mathbf{a}_{2}\right)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$ be the distance between \mathbf{a}_{1} and \mathbf{a}_{2}. Consider the case where each \succeq_{i} satisfies the following additional property: if $\mathbf{a}_{1}, \mathbf{a}_{2}$ satisfies $d\left(\mathbf{a}_{1}, \mathbf{p}_{i}\right)=d\left(\mathbf{a}_{2}, \mathbf{p}_{i}\right)$, then $\mathbf{a}_{1} \succeq_{i} \mathbf{a}_{2}$ and $\mathbf{a}_{2} \succeq \mathbf{a}_{1}$. That is, each agent equally prefers any two points that have equal distance to his peak. Suppose n is an odd number. Prove that the social choice function in Part 3 is strategyproof.

Question 2 (House Allocation). 1. Consider the house allocation problem with strict preferences. Complete the proof of Theorem 10.6 in the book by proving that the allocation output by the Top Trading Cycle Algorithm does not contain a blocking coalition of agents.
2. Is the allocation output by the Top Trading Cycle Algorithm Pareto-optimal?
3. Consider the setting where the preferences may not be strict. Now each agent may have more than one outgoing edge. Suppose the Top Trading Cycle Algorithm iteratively finds an arbitrary cycle and swaps the houses according to the cycle. Is the output allocation Pareto-optimal?

Question 3 (Stable Matching). Consider the stable matching problem with a set M of males and a set N of females, with $|M|=|N|=T$. Each male $m \in M$ has a valuation function $f_{m}: N \rightarrow \mathbb{R}^{+}$, which yields a ranking over the females. The ranking is assumed to be strict: for any $n_{1}, n_{2} \in N$, we have $f_{m}\left(n_{1}\right) \neq f_{m}\left(n_{2}\right)$. Each female $n \in N$ has a valuation function $f_{n}: M \rightarrow \mathbb{R}^{+}$, which yields a ranking that is also assumed to be strict.

1. Consider the perfect matching μ that maximizes the social welfare: $\sum_{m=1}^{T} f_{m}(\mu(m))+$ $\sum_{n=1}^{T} f_{n}(\mu(n))$. Is μ always stable?
2. Consider a stable matching μ. Is μ Pareto-optimal (meaning that there does not exist μ^{\prime}, which may or may not be stable, such that every agent in $M \cup N$ receives weakly higher value and at least one agent receives strictly higher value)?
3. Consider a male-optimal matching μ. Prove that μ is weakly Pareto-optimal for males (i.e., there does not exist μ^{\prime}, which may or may not be stable, such that every male receives strictly higher value).
4. Consider a male-optimal matching μ. Prove that μ may not be Pareto-optimal for males (i.e., for some male-optimal μ, there may exist μ^{\prime}, which may or may not be stable, such that every male receives weakly higher value and at least one male receives strictly higher value).
